Influence of atropine dose on the anterior pole of a myopic pediatric population

Authors

  • Bruno Songel Sanchis Vision and Optometry department, Complutense University of Madrid image/svg+xml Autor/a
  • Natalia Sanz Flores Vision and Optometry department, Complutense University of Madrid image/svg+xml Autor/a
  • Dr. Rafael Bella Gala Complutense University of Madrid image/svg+xml Autor/a
  • Dr. Noemí Güemes Villahoz Hospital Clínico San Carlos, ophthalmology service image/svg+xml Autor/a

DOI:

https://doi.org/10.71413/4s500m76

Keywords:

Myopia, Myopia Control, adverse events, Atropine, refractive error

Abstract

Relevance: The use of pharmacological treatment in the form of atropine eye drops to control the progression of childhood myopia can produce changes in the anterior pole.

Purpose: To evaluate the changes produced in the anterior pole in myopic children treated with 0.025% atropine eye drops.

Methods: Myopic children between 4 and 16 years old treated with 0.025% atropine eye drops were included. Axial length, cycloplegic refraction in spherical equivalent (SER EE'), endothelial count (ER) was evaluated by specular microscopy, pupil diameter in different mesopic and photopic conditions, tear breakup time (NIKBUT), by Keratograph, corneal thickness (GC). Central, corneal curvature, astigmatism and corneal asphericity using tomography (Pentacam). Patients were evaluated before starting treatment (baseline), and after 12 months.

Results: A total of 68 myopic children with a mean age of 9.8 ± 2.5 years were followed up for 12 months. No significant changes were observed in RE, CG, corneal asphericity or NIKBUT (p=0.55, p=0.81, p=0.63, p=0,10). The pupil diameter increased after 12 months in mesopic conditions from (6.44 ± 0.98mm) to (7.25 ± 0.74mm) and photopic conditions from (3.52 ± 0.77mm) to (4.90 ± 1. 06mm) p<0.001. Mean corneal astigmatism from 1.09 ± 0.44D to 1.22 ± 0.52D at 12 months p<0.05

Conclusions: The use of 0.025% atropine eye drops does not produce significant changes in the studied parameters of the anterior pole at 12 months of follow-up. Given the increase in long-term use of atropine eye drops, further studies are recommended.

References

Walline JJ, Lindsley KB, Vedula SS, et al. Interventions to slow progression of myopia in children. Cochrane Database of Systematic Reviews. 2020(1). DOI: https://doi.org/10.1002/14651858.CD004916.pub4

Vitale S, Sperduto RD, Ferris FL. Increased Prevalence of Myopia in the United States Between 1971-1972 and 1999-2004. Archives of Ophthalmology. 2009;127(12):1632-9. DOI: https://doi.org/10.1001/archophthalmol.2009.303

Tideman JWL, Pärssinen O, Haarman AEG, et al. Evaluation of Shared Genetic Susceptibility to High and Low Myopia and Hyperopia. Jama Ophthalmology. 2021;139(6):601-9. DOI: https://doi.org/10.1001/jamaophthalmol.2021.0497

Haarman AEG, Enthoven CA, Tideman JWL, et al. The Complications of Myopia: A Review and Meta-Analysis. Investigative Ophthalmology & Visual Science. 2020;61(4). DOI: https://doi.org/10.1167/iovs.61.4.49

Tedja MS, Haarman AEG, Meester-Smoor MA, et al. IMI - Myopia Genetics Report. Investigative Ophthalmology & Visual Science. 2019;60(3):M89-M105. DOI: https://doi.org/10.1167/iovs.18-25965

Wolffsohn JS, Flitcroft DI, Gifford KL, et al. IMI - Myopia Control Reports Overview and Introduction. Investigative Ophthalmology & Visual Science. 2019;60(3):M1-M19. DOI: https://doi.org/10.1167/iovs.18-25980

Tideman JWL, Polling JR, Vingerling JR, et al. Axial length growth and the risk of developing myopia in European children. Acta Ophthalmologica. 2018;96(3):301-9. DOI: https://doi.org/10.1111/aos.13603

Diez PS, Yang LH, Lu MX, et al. Growth curves of myopia-related parameters to clinically monitor the refractive development in Chinese schoolchildren. Graefes Archive for Clinical and Experimental Ophthalmology. 2019;257(5):1045-53. DOI: https://doi.org/10.1007/s00417-019-04290-6

Mutti DO, Sinnott LT, Mitchell GL, et al. Ocular Component Development during Infancy and Early Childhood. Optometry and Vision Science. 2018;95(11):976-85. DOI: https://doi.org/10.1097/OPX.0000000000001296

Flitcroft DI. Emmetropisation and the aetiology of refractive errors. Eye. 2014;28(2):169-79. DOI: https://doi.org/10.1038/eye.2013.276

Mutti DO, Mitchell GL, Jones LA, et al. Axial growth and changes in lenticular and corneal power during emmetropization in infants. Investigative Ophthalmology & Visual Science. 2005;46(9):3074-80. DOI: https://doi.org/10.1167/iovs.04-1040

Ye S, Liu SX, Li WL, et al. Associations between anthropometric indicators and both refraction and ocular biometrics in a cross-sectional study of Chinese schoolchildren. Bmj Open. 2019;9(5). DOI: https://doi.org/10.1136/bmjopen-2018-027212

Holden BA, Fricke TR, Wilson DA, et al. Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmology. 2016;123(5):1036-42. DOI: https://doi.org/10.1016/j.ophtha.2016.01.006

Gueemes-Villahoz N, de Liano RG, Angel PP, et al. Lifestyle Factors in Myopic Spanish Children. Children-Basel. 2024;11(2):18. DOI: https://doi.org/10.3390/children11020139

Hyman L, Gwiazda J, Marsh-Tootle WL, et al. The Correction of Myopia Evaluation Trial (COMET): Design and general baseline characteristics. Controlled Clinical Trials. 2001;22(5):573-91. DOI: https://doi.org/10.1016/S0197-2456(01)00156-8

Shinojima A, Negishi K, Tsubota K, et al. Multiple Factors Causing Myopia and the Possible Treatments: A Mini Review. Frontiers in Public Health. 2022;10. DOI: https://doi.org/10.3389/fpubh.2022.897600

Cooper J, Tkatchenko AV. A Review of Current Concepts of the Etiology and Treatment of Myopia. Eye & Contact Lens-Science and Clinical Practice. 2018;44(4):231-47. DOI: https://doi.org/10.1097/ICL.0000000000000499

Fau C, Nabzo S, Nasabun V. ¿Selección de ojos o pacientes? Trampa estadística. Revista mexicana de oftalmología. 2020;94(1):53-4. DOI: https://doi.org/10.24875/RMO.M20000095

Cheng CY, Liu JH, Chiang SC, et al. Statistics in ophthalmic research: two eyes, one eye or the mean? Zhonghua yi xue za zhi = Chinese medical journal; Free China ed. 2000;63(12):885-92.

Chia A, Chua WH, Cheung YB, et al. Atropine for the Treatment of Childhood Myopia: Safety and Efficacy of 0.5%, 0.1%, and 0.01% Doses (Atropine for the Treatment of Myopia 2). Ophthalmology. 2012;119(2):347-54. DOI: https://doi.org/10.1016/j.ophtha.2011.07.031

Fu AC, Stapleton F, Wei L, et al. Effect of low-dose atropine on myopia progression, pupil diameter and accommodative amplitude: low-dose atropine and myopia progression. British Journal of Ophthalmology. 2020;104(11):1535-41. DOI: https://doi.org/10.1136/bjophthalmol-2019-315440

Larkin GL, Tahir A, Epley KD, et al. Atropine 0.01% Eye Drops for Myopia Control in American Children: A Multiethnic Sample Across Three US Sites. Ophthalmology and Therapy. 2019;8(4):589-98. DOI: https://doi.org/10.1007/s40123-019-00217-w

Moon JS, Shin SY. The diluted atropine for inhibition of myopia progression in Korean children. International Journal of Ophthalmology. 2018;11(10):1657-62.

Yam JC, Jiang YN, Tang SM, et al. Low-Concentration Atropine for Myopia Progression (LAMP) Study A Randomized, Double-Blinded, Placebo-Controlled Trial of 0.05%, 0.025%, and 0.01% Atropine Eye Drops in Myopia Control. Ophthalmology. 2019;126(1):113-24. DOI: https://doi.org/10.1016/j.ophtha.2018.05.029

Clark TY, Clark RA. Atropine 0.01% Eyedrops Significantly Reduce the Progression of Childhood Myopia. Journal of Ocular Pharmacology and Therapeutics. 2015;31(9):541-5. DOI: https://doi.org/10.1089/jop.2015.0043

Joachimsen L, Böhringer D, Gross NJ, et al. A Pilot Study on the Efficacy and Safety of 0.01% Atropine in German Schoolchildren with Progressive Myopia. Ophthalmology and Therapy. 2019;8(3):427-33. DOI: https://doi.org/10.1007/s40123-019-0194-6

Lee JJ, Fang PC, Yang IH, et al. Prevention of myopia progression with 0.05% atropine solution. Journal of Ocular Pharmacology and Therapeutics. 2006;22(1):41-6. DOI: https://doi.org/10.1089/jop.2006.22.41

Sacchi M, Serafino M, Villani E, et al. Efficacy of atropine 0.01% for the treatment of childhood myopia in European patients. Acta Ophthalmologica. 2019;97(8):E1136-E40. DOI: https://doi.org/10.1111/aos.14166

Singh S, Srivastav S, Mohamed A, et al. Non-invasive Tear Film Assessment in Normal Population: Effect of Age, Sex, and Interparametric Relationship. Frontiers in Medicine. 2022;9:5. DOI: https://doi.org/10.3389/fmed.2022.894184

Tian CL, Wen Q, Fan TJ. Cytotoxicity of atropine to human corneal epithelial cells by inducing cell cycle arrest and mitochondrion-dependent apoptosis. Experimental and Toxicologic Pathology. 2015;67(10):517-24. DOI: https://doi.org/10.1016/j.etp.2015.07.006

Sharma I, Das GK, Rohatgi J, et al. Low Dose Atropine in Preventing the Progression of Childhood Myopia: A Randomised Controlled Trial. Current Eye Research. 2023;48(4):402-7. DOI: https://doi.org/10.1080/02713683.2022.2162925

Kumaran A, Htoon HM, Tan D, et al. Analysis of Changes in Refraction and Biometry of Atropine- and Placebo-Treated Eyes. Investigative Ophthalmology & Visual Science. 2015;56(9):5650-5. doi: 10.1167/iovs.14-14716. PubMed PMID: WOS:000362882800078. DOI: https://doi.org/10.1167/iovs.14-14716

Wang M, Cui C, Sui Y, et al. Effect of 0.02% and 0.01% atropine on astigmatism: a two-year clinical trial. Bmc Ophthalmology. 2022;22(1):9. DOI: https://doi.org/10.1186/s12886-022-02385-z

Additional Files

Published

2025-02-16

How to Cite

1.
Influence of atropine dose on the anterior pole of a myopic pediatric population. Optom Clin y Cienc Vis [Internet]. 2025 Feb. 16 [cited 2025 Mar. 9];4(2):3-14. Available from: https://revistaoccv.com/index.php/occv/article/view/35

Similar Articles

1-10 of 11

You may also start an advanced similarity search for this article.