Influence of atropine dose on the anterior pole of a myopic pediatric population
DOI:
https://doi.org/10.71413/4s500m76Keywords:
Myopia, Myopia Control, adverse events, Atropine, refractive errorAbstract
Relevance: The use of pharmacological treatment in the form of atropine eye drops to control the progression of childhood myopia can produce changes in the anterior pole.
Purpose: To evaluate the changes produced in the anterior pole in myopic children treated with 0.025% atropine eye drops.
Methods: Myopic children between 4 and 16 years old treated with 0.025% atropine eye drops were included. Axial length, cycloplegic refraction in spherical equivalent (SER EE'), endothelial count (ER) was evaluated by specular microscopy, pupil diameter in different mesopic and photopic conditions, tear breakup time (NIKBUT), by Keratograph, corneal thickness (GC). Central, corneal curvature, astigmatism and corneal asphericity using tomography (Pentacam). Patients were evaluated before starting treatment (baseline), and after 12 months.
Results: A total of 68 myopic children with a mean age of 9.8 ± 2.5 years were followed up for 12 months. No significant changes were observed in RE, CG, corneal asphericity or NIKBUT (p=0.55, p=0.81, p=0.63, p=0,10). The pupil diameter increased after 12 months in mesopic conditions from (6.44 ± 0.98mm) to (7.25 ± 0.74mm) and photopic conditions from (3.52 ± 0.77mm) to (4.90 ± 1. 06mm) p<0.001. Mean corneal astigmatism from 1.09 ± 0.44D to 1.22 ± 0.52D at 12 months p<0.05
Conclusions: The use of 0.025% atropine eye drops does not produce significant changes in the studied parameters of the anterior pole at 12 months of follow-up. Given the increase in long-term use of atropine eye drops, further studies are recommended.
References
Walline JJ, Lindsley KB, Vedula SS, et al. Interventions to slow progression of myopia in children. Cochrane Database of Systematic Reviews. 2020(1). DOI: https://doi.org/10.1002/14651858.CD004916.pub4
Vitale S, Sperduto RD, Ferris FL. Increased Prevalence of Myopia in the United States Between 1971-1972 and 1999-2004. Archives of Ophthalmology. 2009;127(12):1632-9. DOI: https://doi.org/10.1001/archophthalmol.2009.303
Tideman JWL, Pärssinen O, Haarman AEG, et al. Evaluation of Shared Genetic Susceptibility to High and Low Myopia and Hyperopia. Jama Ophthalmology. 2021;139(6):601-9. DOI: https://doi.org/10.1001/jamaophthalmol.2021.0497
Haarman AEG, Enthoven CA, Tideman JWL, et al. The Complications of Myopia: A Review and Meta-Analysis. Investigative Ophthalmology & Visual Science. 2020;61(4). DOI: https://doi.org/10.1167/iovs.61.4.49
Tedja MS, Haarman AEG, Meester-Smoor MA, et al. IMI - Myopia Genetics Report. Investigative Ophthalmology & Visual Science. 2019;60(3):M89-M105. DOI: https://doi.org/10.1167/iovs.18-25965
Wolffsohn JS, Flitcroft DI, Gifford KL, et al. IMI - Myopia Control Reports Overview and Introduction. Investigative Ophthalmology & Visual Science. 2019;60(3):M1-M19. DOI: https://doi.org/10.1167/iovs.18-25980
Tideman JWL, Polling JR, Vingerling JR, et al. Axial length growth and the risk of developing myopia in European children. Acta Ophthalmologica. 2018;96(3):301-9. DOI: https://doi.org/10.1111/aos.13603
Diez PS, Yang LH, Lu MX, et al. Growth curves of myopia-related parameters to clinically monitor the refractive development in Chinese schoolchildren. Graefes Archive for Clinical and Experimental Ophthalmology. 2019;257(5):1045-53. DOI: https://doi.org/10.1007/s00417-019-04290-6
Mutti DO, Sinnott LT, Mitchell GL, et al. Ocular Component Development during Infancy and Early Childhood. Optometry and Vision Science. 2018;95(11):976-85. DOI: https://doi.org/10.1097/OPX.0000000000001296
Flitcroft DI. Emmetropisation and the aetiology of refractive errors. Eye. 2014;28(2):169-79. DOI: https://doi.org/10.1038/eye.2013.276
Mutti DO, Mitchell GL, Jones LA, et al. Axial growth and changes in lenticular and corneal power during emmetropization in infants. Investigative Ophthalmology & Visual Science. 2005;46(9):3074-80. DOI: https://doi.org/10.1167/iovs.04-1040
Ye S, Liu SX, Li WL, et al. Associations between anthropometric indicators and both refraction and ocular biometrics in a cross-sectional study of Chinese schoolchildren. Bmj Open. 2019;9(5). DOI: https://doi.org/10.1136/bmjopen-2018-027212
Holden BA, Fricke TR, Wilson DA, et al. Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmology. 2016;123(5):1036-42. DOI: https://doi.org/10.1016/j.ophtha.2016.01.006
Gueemes-Villahoz N, de Liano RG, Angel PP, et al. Lifestyle Factors in Myopic Spanish Children. Children-Basel. 2024;11(2):18. DOI: https://doi.org/10.3390/children11020139
Hyman L, Gwiazda J, Marsh-Tootle WL, et al. The Correction of Myopia Evaluation Trial (COMET): Design and general baseline characteristics. Controlled Clinical Trials. 2001;22(5):573-91. DOI: https://doi.org/10.1016/S0197-2456(01)00156-8
Shinojima A, Negishi K, Tsubota K, et al. Multiple Factors Causing Myopia and the Possible Treatments: A Mini Review. Frontiers in Public Health. 2022;10. DOI: https://doi.org/10.3389/fpubh.2022.897600
Cooper J, Tkatchenko AV. A Review of Current Concepts of the Etiology and Treatment of Myopia. Eye & Contact Lens-Science and Clinical Practice. 2018;44(4):231-47. DOI: https://doi.org/10.1097/ICL.0000000000000499
Fau C, Nabzo S, Nasabun V. ¿Selección de ojos o pacientes? Trampa estadística. Revista mexicana de oftalmología. 2020;94(1):53-4. DOI: https://doi.org/10.24875/RMO.M20000095
Cheng CY, Liu JH, Chiang SC, et al. Statistics in ophthalmic research: two eyes, one eye or the mean? Zhonghua yi xue za zhi = Chinese medical journal; Free China ed. 2000;63(12):885-92.
Chia A, Chua WH, Cheung YB, et al. Atropine for the Treatment of Childhood Myopia: Safety and Efficacy of 0.5%, 0.1%, and 0.01% Doses (Atropine for the Treatment of Myopia 2). Ophthalmology. 2012;119(2):347-54. DOI: https://doi.org/10.1016/j.ophtha.2011.07.031
Fu AC, Stapleton F, Wei L, et al. Effect of low-dose atropine on myopia progression, pupil diameter and accommodative amplitude: low-dose atropine and myopia progression. British Journal of Ophthalmology. 2020;104(11):1535-41. DOI: https://doi.org/10.1136/bjophthalmol-2019-315440
Larkin GL, Tahir A, Epley KD, et al. Atropine 0.01% Eye Drops for Myopia Control in American Children: A Multiethnic Sample Across Three US Sites. Ophthalmology and Therapy. 2019;8(4):589-98. DOI: https://doi.org/10.1007/s40123-019-00217-w
Moon JS, Shin SY. The diluted atropine for inhibition of myopia progression in Korean children. International Journal of Ophthalmology. 2018;11(10):1657-62.
Yam JC, Jiang YN, Tang SM, et al. Low-Concentration Atropine for Myopia Progression (LAMP) Study A Randomized, Double-Blinded, Placebo-Controlled Trial of 0.05%, 0.025%, and 0.01% Atropine Eye Drops in Myopia Control. Ophthalmology. 2019;126(1):113-24. DOI: https://doi.org/10.1016/j.ophtha.2018.05.029
Clark TY, Clark RA. Atropine 0.01% Eyedrops Significantly Reduce the Progression of Childhood Myopia. Journal of Ocular Pharmacology and Therapeutics. 2015;31(9):541-5. DOI: https://doi.org/10.1089/jop.2015.0043
Joachimsen L, Böhringer D, Gross NJ, et al. A Pilot Study on the Efficacy and Safety of 0.01% Atropine in German Schoolchildren with Progressive Myopia. Ophthalmology and Therapy. 2019;8(3):427-33. DOI: https://doi.org/10.1007/s40123-019-0194-6
Lee JJ, Fang PC, Yang IH, et al. Prevention of myopia progression with 0.05% atropine solution. Journal of Ocular Pharmacology and Therapeutics. 2006;22(1):41-6. DOI: https://doi.org/10.1089/jop.2006.22.41
Sacchi M, Serafino M, Villani E, et al. Efficacy of atropine 0.01% for the treatment of childhood myopia in European patients. Acta Ophthalmologica. 2019;97(8):E1136-E40. DOI: https://doi.org/10.1111/aos.14166
Singh S, Srivastav S, Mohamed A, et al. Non-invasive Tear Film Assessment in Normal Population: Effect of Age, Sex, and Interparametric Relationship. Frontiers in Medicine. 2022;9:5. DOI: https://doi.org/10.3389/fmed.2022.894184
Tian CL, Wen Q, Fan TJ. Cytotoxicity of atropine to human corneal epithelial cells by inducing cell cycle arrest and mitochondrion-dependent apoptosis. Experimental and Toxicologic Pathology. 2015;67(10):517-24. DOI: https://doi.org/10.1016/j.etp.2015.07.006
Sharma I, Das GK, Rohatgi J, et al. Low Dose Atropine in Preventing the Progression of Childhood Myopia: A Randomised Controlled Trial. Current Eye Research. 2023;48(4):402-7. DOI: https://doi.org/10.1080/02713683.2022.2162925
Kumaran A, Htoon HM, Tan D, et al. Analysis of Changes in Refraction and Biometry of Atropine- and Placebo-Treated Eyes. Investigative Ophthalmology & Visual Science. 2015;56(9):5650-5. doi: 10.1167/iovs.14-14716. PubMed PMID: WOS:000362882800078. DOI: https://doi.org/10.1167/iovs.14-14716
Wang M, Cui C, Sui Y, et al. Effect of 0.02% and 0.01% atropine on astigmatism: a two-year clinical trial. Bmc Ophthalmology. 2022;22(1):9. DOI: https://doi.org/10.1186/s12886-022-02385-z
Additional Files
Published
Issue
Section
Categories
License
Copyright (c) 2025 Clinical Optometry and Vision Science

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.