Design of Toric Intraocular Lenses and Evaluation of Their Optical Quality in a Model Eye
Keywords:
cataract, intraocular lens, toric, inclination, Decentration, rotation, designAbstract
Relevance: The study evaluates the image quality of toric intraocular lenses (IOLs-T) with different levels of toricity and aspheric geometries, comparing them with spherical IOLs-T. It analyzes their tolerance to tilt, decentration, and rotation in a model eye through numerical simulations, without experimental testing.
Purpose: To assess the image quality of various designs of toric intraocular lenses (IOLs-T) and their tolerance to tilt, decentration, and rotation in a model eye. IOLs-T with different degrees of toricity and aspheric geometries (negative and neutral asphericities) were designed, adjusting the model's corneal toricity to compensate for the IOLs' toricity. The results, obtained numerically without experimental testing, compare the optical performance of IOLs with varying toricities and asphericities, including spherical toric IOLs.
Methods: To evaluate the optical performance of toric intraocular lenses (IOLs-T) under different conditions, a numerical model of a pseudophakic eye was used in ZEMAX® software. Based on Atchinson's schematic eye, the study considered IOLs-T with various astigmatic powers and aspheric geometries (neutral and negative). The effects of decentration, tilt, and rotation of the IOLs-T on image quality were analyzed by measuring Modulation Transfer Function (MTF) and Zernike coefficients. The results suggest that the retina's position affects how these factors impact optical quality.
Results: The study evaluated the optical performance of various designs of toric intraocular lenses (IOLs-T) under conditions of decentration, tilt, and rotation, using metrics such as Modulation Transfer Function (MTF) and root mean square (RMS) error of aberrations. Lens B showed the best optical quality when centered but was most affected by decentration and rotation, with a significant drop in MTF. Lenses A and spherical IOLs initially offered lower quality but greater stability against displacements. Lens B had minimal defocus when centered and performed better with tilts up to 4°, whereas other lenses experienced greater MTF reduction with smaller tilts. These results indicate that while Lens B provides the best centered optical quality, its performance significantly deteriorates with decentration and tilt.
Conclusions: Toric IOLs with higher conicity constants offer better optical performance in terms of MTF and wavefront aberration when centered, surpassing spherical lenses. Although MTF is independent of cylinder power, Lens B is more sensitive to decentration, while lenses with lower conicity or spherical lenses are less affected. Astigmatism and coma aberrations are similar among designs under tilt or rotation. The results suggest that IOLs with minimal aberrations may be the best option if perfect alignment cannot be ensured.
References
Doughty MJ, Zaman ML. Human corneal thickness and its impact on intraocular pressure measures: a review and meta-analysis approach. Surv Ophthalmol. abril de 2000;44(5):367-408.
Marín P, Cinta M. Óptica Fisiológica: el sistema óptico del ojo y la visión binocular. :307.
Yebra-Pimentel E, González-Méijome JM, et al. Asfericidad corneal en una población de adultos jóvenes: Implicaciones clínicas. Archivos de la Sociedad Española de Oftalmología. agosto de 2004;79(8):385-91.
Dr. Alejandro del Castillo Ruiz DrEHQ. Aberraciones corneales de alto orden. ¿Un método para graduar al queratocono? Revista Mex Oftal. diciembre de 2008;82(6):369-75.
Satou T, Shimizu K, Tsunehiro S et al. Relationship between Crystalline Lens Thickness and Shape and the Identification of Anterior Ocular Segment Parameters for Predicting the Intraocular Lens Position after Cataract Surgery. BioMed Research International. 8 de julio de 2019;2019:1-9.
Aggarwala KRG. Ocular Accommodation, Intraocular Pressure, Development of Myopia and Glaucoma: Role of Ciliary Muscle, Choroid and Metabolism. Med Hypothesis Discov Innov Ophthalmol. 2020;9(1):66-70.
Philip K, Martinez A, Ho A et al. Total ocular, anterior corneal and lenticular higher order aberrations in hyperopic, myopic and emmetropic eyes. Vision Research. 1 de enero de 2012;52(1):31-7.
Berrio E, Tabernero J, Artal P. Optical aberrations and alignment of the eye with age. Journal of Vision. 1 de diciembre de 2010;10(14):34-34.
Calladine D, Evans J et al. Multifocal versus monofocal intraocular lenses after cataract extraction. Sao Paulo Medical Journal. 1 de febrero de 2015;133:68-68.
A Piers P, A Weeber H, et al. Theoretical Comparison of Aberration-correcting Customized and Aspheric Intraocular Lenses. J Refract Surg. 1 de abril de 2007;23(4):374-84.
Rosés JF, Vega F et al. Estudio comparativo de la calidad óptica de lentes intraoculares de diseño esférico y asférico en presencia de errores de inclinación. Gaceta de optometría y óptica oftálmica. 2015;(503):24-8.
Sánchez OEP. Predictibilidad en la inducción de aberración esférica basada en la asfericidad corneal post LASIK en miopes. Revista Sociedad Colombiana de Oftalmología. 27 de agosto de 2017;49(4):262-7.
Pérez-Gracia J, Varea A et al. Evaluation of the optical performance for aspheric intraocular lenses in relation with tilt and decenter errors. PLoS One [Internet]. 4 de mayo de 2020 [citado 27 de mayo de 2020];15(5).
Mateo Gabás J, Ascaso Puyuelo FJ et al. Tratamiento del astigmatismo moderado en pacientes con cataratas. [Zaragoza]: Universidad de Zaragoza, Prensas de la Universidad; 2013. (Tesis de la Universidad de Zaragoza).
Razmjoo H, Ghoreishi M et al. Toric Intraocular Lens for Astigmatism Correction in Cataract Patients. Advanced Biomedical Research. 1 de enero de 2017;6(1):123.
Kessel L, Andresen J, Tendal B et al. Toric Intraocular Lenses in the Correction of Astigmatism During Cataract Surgery: A Systematic Review and Meta-analysis. Ophthalmology. febrero de 2016;123(2):275-86.
Mozayan E, Lee JK. Update on astigmatism management. Curr Opin Ophthalmol. julio de 2014;25(4):286-90.
Toric IOLs - EyeWiki [Internet]. [citado 10 de abril de 2020]. Disponible en: https://eyewiki.aao.org/Toric_IOLs
Compare IOLs | Beye [Internet]. Beye | The Eye Care Market Research Engine. Beye.com; [citado 22 de abril de 2020]. Disponible en: https://www.beye.com/r/co/22
Sen P, Kshetrapal M, Shah C, et al. Posterior capsule opacification rate after phacoemulsification in pediatric cataract: Hydrophilic versus hydrophobic intraocular lenses. Journal of Cataract & Refractive Surgery. 1 de octubre de 2019;45(10):1380-5.
Badoza D. Lentes intraoculares de acrílico hidrofóbico: seguimiento entre 2 y 10 años [Internet]. Javier Casiraghi; [citado 10 de abril de 2020]. Disponible en: https://www.oftalmologos.org.ar/oce/items/show/247
Visser N, Beckers HJM, Bauer NJC, et al. Toric vs aspherical control intraocular lenses in patients with cataract and corneal astigmatism: a randomized clinical trial. JAMA Ophthalmol. diciembre de 2014;132(12):1462-8.
Holland E, Lane S, Horn JD, et al. The AcrySof Toric intraocular lens in subjects with cataracts and corneal astigmatism: a randomized, subject-masked, parallel-group, 1-year study. Ophthalmology. noviembre de 2010;117(11):2104-11.
Lane SS, Ernest P, Miller KM, et al. Comparison of clinical and patient-reported outcomes with bilateral AcrySof 21 toric or spherical control intraocular lenses. J Refract Surg. octubre de 2009;25(10):899-901.
Tognetto D, Perrotta AA, Bauci F, et al. Quality of images with toric intraocular lenses: Journal of Cataract & Refractive Surgery. marzo de 2018;44(3):376-81.
Marcos S. Conocer la calidad óptica del ojo humano es importante en física, oftalmología, optometría, psicología... Qué es, cómo se mide o cómo mejorarla se cuentan entre las cuestiones centrales que la ciencia empieza a desentrañar. INVESTIGACIÓN Y CIENCIA. 2005;9.
Bueno JM. Introducción a la óptica instrumental. EDITUM; 1999. 130 p.
Tomás-Juan J. Aberrometría ocular: aplicaciones clínicas y limitaciones de los sensores de frente de onda. Cienc Tecnol Salud Vis Ocul. 1 de junio de 2014;12(1):93.
Mr C, Rr K. Correlation of aberrations with visual acuity and symptoms. Ophthalmol Clin North Am. 1 de junio de 2004;17(2):135-42, v.
Solomon KD, Fernández de Castro LE, Sandoval HP, Vroman DT. Comparison of wavefront sensing devices. Ophthalmol Clin North Am. junio de 2004;17(2):119-27, v.
The STAAR Toric IOL [Internet]. CRSToday. [citado 21 de abril de 2020]. Disponible en: https://crstoday.com/articles/2006-may/crst0506_14-html/
Additional Files
Published
Issue
Section
Categories
License
Copyright (c) 2024 Clinical Optometry and Vision Science
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.